Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Stem Cell Reports ; 17(3): 522-537, 2022 03 08.
Article in English | MEDLINE | ID: covidwho-1692862

ABSTRACT

Patients with coronavirus disease 2019 (COVID-19) commonly have manifestations of heart disease. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome encodes 27 proteins. Currently, SARS-CoV-2 gene-induced abnormalities of human heart muscle cells remain elusive. Here, we comprehensively characterized the detrimental effects of a SARS-CoV-2 gene, Orf9c, on human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) by preforming multi-omic analyses. Transcriptomic analyses of hPSC-CMs infected by SARS-CoV-2 with Orf9c overexpression (Orf9cOE) identified concordantly up-regulated genes enriched into stress-related apoptosis and inflammation signaling pathways, and down-regulated CM functional genes. Proteomic analysis revealed enhanced expressions of apoptotic factors, whereas reduced protein factors for ATP synthesis by Orf9cOE. Orf9cOE significantly reduced cellular ATP level, induced apoptosis, and caused electrical dysfunctions of hPSC-CMs. Finally, drugs approved by the U.S. Food and Drug Administration, namely, ivermectin and meclizine, restored ATP levels and ameliorated CM death and functional abnormalities of Orf9cOE hPSC-CMs. Overall, we defined the molecular mechanisms underlying the detrimental impacts of Orf9c on hPSC-CMs and explored potentially therapeutic approaches to ameliorate Orf9c-induced cardiac injury and abnormalities.


Subject(s)
COVID-19/pathology , Coronavirus Nucleocapsid Proteins/genetics , Genome-Wide Association Study/methods , SARS-CoV-2/genetics , Action Potentials/drug effects , Adenosine Triphosphate/metabolism , Apoptosis/drug effects , Apoptosis/genetics , COVID-19/virology , Down-Regulation , Humans , Ivermectin/pharmacology , Meclizine/pharmacology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Phosphoproteins/genetics , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Protein Interaction Maps/genetics , RNA, Messenger/chemistry , RNA, Messenger/metabolism , SARS-CoV-2/isolation & purification , Signal Transduction/genetics , Transcriptome/drug effects , Up-Regulation
2.
J Med Virol ; 93(12): 6525-6534, 2021 12.
Article in English | MEDLINE | ID: covidwho-1544299

ABSTRACT

By analyzing newly collected SARS-CoV-2 genomes and comparing them with our previous study about SARS-CoV-2 single nucleotide variants (SNVs) before June 2020, we found that the SNV clustering had changed remarkably since June 2020. Apart from that the group of SNVs became dominant, which is represented by two nonsynonymous mutations A23403G (S:D614G) and C14408T (ORF1ab:P4715L), a few emerging groups of SNVs were recognized with sharply increased monthly incidence ratios of up to 70% in November 2020. Further investigation revealed sets of SNVs specific to patients' ages and/or gender, or strongly associated with mortality. Our logistic regression model explored features contributing to mortality status, including three critical SNVs, G25088T(S:V1176F), T27484C (ORF7a:L31L), and T25A (upstream of ORF1ab), ages above 40 years old, and the male gender. The protein structure analysis indicated that the emerging subgroups of nonsynonymous SNVs and the mortality-related ones were located on the protein surface area. The clashes in protein structure introduced by these mutations might in turn affect the viral pathogenesis through the alteration of protein conformation, leading to a difference in transmission and virulence. Particularly, we explored the fact that nonsynonymous SNVs tended to occur in intrinsic disordered regions of Spike and ORF1ab to significantly increase hydrophobicity, suggesting a potential role in the change of protein folding related to immune evasion.


Subject(s)
COVID-19/mortality , Genome, Viral/genetics , Polymorphism, Single Nucleotide/genetics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Adult , Aged , Aged, 80 and over , COVID-19/pathology , Female , Humans , Male , Middle Aged , Mutation , Polyproteins/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Proteins/genetics , Virulence/genetics , Young Adult
3.
Journal of Medical Virology ; 93(12):i-i, 2021.
Article in English | Wiley | ID: covidwho-1469525

ABSTRACT

Front Cover Caption: The cover image is based on the Research Article Updated SARS-CoV-2 single nucleotide variants and mortality association by Shuyi Fang et al., https://doi.org/10.1002/jmv.27191.

4.
Nucleic Acids Res ; 49(D1): D706-D714, 2021 01 08.
Article in English | MEDLINE | ID: covidwho-1117393

ABSTRACT

The COVID-19 outbreak has become a global emergency since December 2019. Analysis of SARS-CoV-2 sequences can uncover single nucleotide variants (SNVs) and corresponding evolution patterns. The Global Evaluation of SARS-CoV-2/hCoV-19 Sequences (GESS, https://wan-bioinfo.shinyapps.io/GESS/) is a resource to provide comprehensive analysis results based on tens of thousands of high-coverage and high-quality SARS-CoV-2 complete genomes. The database allows user to browse, search and download SNVs at any individual or multiple SARS-CoV-2 genomic positions, or within a chosen genomic region or protein, or in certain country/area of interest. GESS reveals geographical distributions of SNVs around the world and across the states of USA, while exhibiting time-dependent patterns for SNV occurrences which reflect development of SARS-CoV-2 genomes. For each month, the top 100 SNVs that were firstly identified world-widely can be retrieved. GESS also explores SNVs occurring simultaneously with specific SNVs of user's interests. Furthermore, the database can be of great help to calibrate mutation rates and identify conserved genome regions. Taken together, GESS is a powerful resource and tool to monitor SARS-CoV-2 migration and evolution according to featured genomic variations. It provides potential directive information for prevalence prediction, related public health policy making, and vaccine designs.


Subject(s)
COVID-19/prevention & control , Computational Biology/methods , Databases, Genetic , Genome, Viral/genetics , Genomics/methods , SARS-CoV-2/genetics , Algorithms , COVID-19/epidemiology , COVID-19/virology , Disease Outbreaks , Global Health , Humans , Internet , Mutation Rate , Polymorphism, Single Nucleotide , Population Dynamics , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Viral Proteins/genetics , Viral Proteins/metabolism
5.
medRxiv ; 2020 Aug 05.
Article in English | MEDLINE | ID: covidwho-900738

ABSTRACT

Four signature groups of frequently occurred single-nucleotide variants (SNVs) were identified in over twenty-eight thousand high-quality and high-coverage SARS-CoV-2 complete genome sequences, representing different viral strains. Some SNVs predominated but were mutually exclusively presented in patients from different countries and areas. These major SNV signatures exhibited distinguishable evolution patterns over time. A few hundred patients were detected with multiple viral strain-representing mutations simultaneously, which may stand for possible co-infection or potential homogenous recombination of SARS-CoV-2 in environment or within the viral host. Interestingly nucleotide substitutions among SARS-CoV-2 genomes tended to switch between bat RaTG13 coronavirus sequence and Wuhan-Hu-1 genome, indicating the higher genetic instability or tolerance of mutations on those sites or suggesting that major viral strains might exist between Wuhan-Hu-1 and RaTG13 coronavirus.

6.
Front Microbiol ; 11: 593548, 2020.
Article in English | MEDLINE | ID: covidwho-853965

ABSTRACT

Four signature groups of frequently occurred single-nucleotide variants (SNVs) were identified in over twenty-eight thousand high-quality and high-coverage SARS-CoV-2 complete genome sequences, representing different viral strains. Some SNVs predominated but were mutually exclusively presented in patients from different countries and areas. These major SNV signatures exhibited distinguishable evolution patterns over time. A few hundred patients were detected with multiple viral strain-representing mutations simultaneously, which may stand for possible co-infection or potential homogenous recombination of SARS-CoV-2 in environment or within the viral host. Interestingly nucleotide substitutions among SARS-CoV-2 genomes tended to switch between bat RaTG13 coronavirus sequence and Wuhan-Hu-1 genome, indicating the higher genetic instability or tolerance of mutations on those sites or suggesting that major viral strains might exist between Wuhan-Hu-1 and RaTG13 coronavirus.

SELECTION OF CITATIONS
SEARCH DETAIL